Outflow response to energy inflow

Global Simulation Boundary Conditions Controlling lonospheric O+ Outflows

DC FAC AC HM Wave Plasma
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Polar study of
outflow response

« Example event from

Polar of data set
supporting study to
complement FAST
Key data

— Plasma flow, density

— Electron flux, E spect
— Transverse E, dB

19 events analyzed
to date

Many more coming
soon




Polar study of
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« Spacecraft
potential signif for
lonospheric flow

* Poynting flux here
iIs DC only.

o Qutflow flux is
substantial, and
clearly has a
Poynting
contribution
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Poynting Flux vs lon Qutflow Flux
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e density vs lon Outflow Flux
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e— energy density vs lon Qutflow Flux
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Electron
temperature
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Outflow response to energy inflow

Global Simulation Boundary Conditions Controlling lonospheric O+ Outflows
DC FAC AC Wave Plasma

Power Flux Power Flux Heat Flux  Polar results similar to
FAST results

« More events and
better statistics
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Jorzosse | I  Weak precip electron
sonetosnea correl may improve
FLANLE Wame |2 T= 0741 with use of full
7y resolution data.
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| Joule Disspation scalings are “ready for
prime time” in models
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